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Spatiotemporal dynamics of electromagnetic pulses in saturating nonlinear optical media with
normal group velocity dispersion
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The nonlinear dynamics of ultrashort optical pulses in nonlinear saturating media with normal group velocity
dispersion is examined. The studied saturating nonlinearity changes the sign at the peak intensity of the laser
pulses. In the bulk media and the planar wave guides the temporal collapse of the pulse is arrested by its
splitting in spatial domain leading to rings formation. The wave collapse in one dimensional geometry cannot
be arrested; the field singularity develops for a finite propagation distgBt6863-651X99)10812-3

PACS numbds): 42.65.Tg

Self-focusing and self-guiding of light beams have re-=2.75 GW/cnd. Such a nonlinearity can be considered
ceived much attention in recent years in connection witheven for the intensities above the critical orig)( In this
their important applications, such as soliton propagation, allcase the nonlinear index of refraction becomes negative at
optical switching, and logi¢1]. The stable spatial solitons the peak while remaining positive in the wings of the pulse
with two transverse dimensions can exist in materials charintensity profile. A phenomenon of spatial ring formation has
acterized by saturable nonlinearity that exactly compensatd2¢en observed in PTS due to the nonlinearity sign changes at
the diffraction. The requirement to have a high-power beanthe beam center when the two-dimensional beam intensity
implies the use of lasers in pulsed regime. Recent achievd(~8 GW/cnt) is above the critical ong5].
ments in short-pulse generation have motivated the studies of Although PTS exhibits the largest saturating nonlinearity
short-pulse propagation in nonlinear media. In such a casknown in any material one may not be remiss in speculating
the pulse dispersion plays an important role. The spatiotendhat the same kind of saturating nonlinearities may be ob-
poral solitons called light bullets can be generated whenevdgined by cascading in noncentrosymmetric media with large
a saturating nonlinearity compensates the anomalous grougffective nonlinear coefficients;" andng". The appropriate
velocity dispersion together with the diffractid@]. How-  sign of these coefficients can be obtained choosing the oc-
ever, most transparent bulk materials exhibit normal groupcurrence sign of interacting waves. These coefficients can be
velocity dispersiofNGVD) that prevents solitons formation. increased by extending the length of nonlinear medj6in
The spatiotemporal dynamics of a light pulse in NGVD caseDynamics of ultrashort laser pulses will be strongly affected
has been comprehensively treated for Kerr m¢8jaAna- by NGVD of media. Since diffraction and dispersion opera-
lyzing three-dimensional nonlinear Schinger equation it tors are of opposite sign, the intense laser pulse evolution in
appears that NGVD prevents collapse, by splitting the puls&err media results from the competition between two main
in time domain into several smaller-scale structures. tendencies, the pulse compression in the transverse spatial

In this paper we study analytically and numerically thedirection (the self focusing and the pulse stretching along
spatiotemporal dynamics of a light pulse propagating inthe time axis(the temporal dispersignin media with satu-
NGVD media with saturating nonlinearities. As a model rating nonlinearity that changes the sign above a critical in-
nonlinearity we consider a particular type of saturating noniensity, the pulse near its peak value undergoes spatial dif-
linearity that, with increasing pulse intensity, changes theraction while compressing in time, contrary to the behavior
sign from the positive to the negative one. Recent measurdd Kerr materials. In what follows we demonstrate that under
ments show that the polydiacetylepara-toluene sulfonate certain conditions NGVD leads to temporal wave collapse in
(PTS exhibits this kind of saturation nonlineariti¢4]. In-  one dimensional geometry, while in bulk media catastrophic
deed the nonlinear index of refraction corresponding to PT$emporal blow-up is arrested by spatial splitting of pulse into
is established to bén=n,l +n,l?, wherel is intensity of smaller cells.
the electromagneti¢EM) radiation. For the 1.6um laser The dynamics of EM pulse propagating in nonlinear ma-
radiation the measured values of second and fourth-order ofterials is based on the analysis of NSE
tical indices are respectively,=2.2x10 3 cn?/GW and 5 5
n SHECRER.C PPN o PN
- . ) o _ ik| — + +A, E—kD— +2k £
=-0.8x10 3 cm*/GW?2. The critical intensity at the peak Jdz  vq ot Jt? No
of the pulse profile giving Sn=0 is ly=|n,/n, 1)
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where¢ is a slowly varying field envelope; is the group  with the nonlinearity function

velocitzy of the pulse propagating along tkeaxis, ny and o

on(|&]%) are respectively linear and nonlinear optical indi- * 2

ces, andA, =%/ 9x*>+ 3%/ 9y? is the two-dimensional La- K(u)= \/_;fo dppF(ue ™). ®)
placian describing beam diffractiolk, is wave vector, and

D=d?/dw? is group velocity dispersiofGVD). The EM  The “energy,” N=A?RT is conserved during the pulse
pulse propagation in media with normal GVD is consideredevolution. The wave front curvature is given by the equation

The dimensionless NSE reads b=(1/4R)dR/dz, while the chirp parameter isc
E &E =—(1/4T)dT/dz
i&— _ ‘9_Z+ALEJr f(|E|2)E=0, 2) The dynamics that foIIo_ws frpm EqéS)—l(8) is gnalogous
az It to the behavior of a “particle” in a two-dimensional poten-

tial. Pushing analogy further gives us better physical under-
where the amplitude of the field envelope and all coordinateganging ofgthe pro%?/em. Notige that Tndirectio% 'fhe effec-
are appropriately renormaliz¢gee Skarkat al.in Ref.[2]).  tje particle has a negative mass. Since the net force acting
A retarded time variable=t—z/vy is used. In the case of on the particle is always nonvanishirg = (F2+ F2)Y2
cyIindric'aIIy symmetric.pulses, the following Lagrangian #0], the localized steady solution correspo;din; to the
density is associated with E(R): equilibrium does not exist. One can readily show that
JE d?(R?+T?)/dZ2>0. Consequently the pulse spreads at least
—-E* E) —rF(|E[?), in one of two dimensionsR and T. Nevertheless, a cata-
3) strophic growth of the field amplitude, so-called collapse,
may occur in the remaining dimension, i.e., eiteior T
where the radiusr=(x2+y?)¥2 and the nonlinear term May tend to zero for finite.
— (Ycudu' In the general formalism we did not use an explicit form
F(u)=ff(u)du’. : alism w an ex
General dynamical properties of nonstationary solutiondOr the nonlinear functiorf(|E|%). In order to investigate the
of Eq. (2) are rather complex. One has to resort to computeflynamical properties of nonsteady solutions, in the subse-
simulation in order to investigate the solutions of such arfluént analysis we will consider a nonlinear term of the fol-
equation. However, the obtained simulation data can b&Wing form:
qualitatively understood using analytical approach. We study f(|E|2) =|E|2— |E[* 9)
the pulse dynamics governed by NSE using the variational '
approach(7]. The localized solution is approximated by a sych a saturating nonlinearity has been widely applied in
Gaussian trial function different domains of researdB]. However, in what follows
we do not limit ourselves to the case when the second term
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E=A(2)exg — - T in Eq. (9) is smaller than the first one. The nonlinearity func-
2R%(2)  2T2(2) tion K in Eq. (8) is now K(A?)=aA*—BA®, where a
=232 andB=2x3752 The forces acting on the effective
. particles respectively iR and T direction are written as
+I(I’2b(Z)+TZC(Z)+¢(Z))). (4)

4 2
h . o o Fr=mz — gQ(A% (10
e self-similar pulse evolution in thedirection is pa-
rametrized by amplitudé, phaseg, transverse widttR, and
temporal duratiorm. The paramete is wave front curvature
andc the “temporal curvature” corresponding to the chirp. 2
Substituting trial function into Eq(3) and integrating Fr==3+=Q(A? (11
L - ™ 7T
overr andr, the average Lagrangian is obtained. It depends
only on optimizingz-dependent parameters of this trial func- \ith the nonlinearity
tion. The condition that the variation of average Lagrangian
with respect to each of these parameters is zero gives corre- ) . aN 28N?
sponding Euler-Lagrange equations. The equations for effec- Q=aA = 2pA"= o7~ Ra7z-
tive forces following respectivelir and T “directions” are

(12

) In the Kerr media =0) the nonlinearityQ is always posi-
d_R:FR:_ iV(R,T), (5) tive and consequently the forde;>0 pushes the particle
dz JR towards higherT. Assuming that the initial “velocity” of

particles, i.e., the chirp is zero, the pulse always spreads in

d’T d temporal domain. If the forc&y in spatial direction is ini-
42 Fr= ZﬁV(R'T)’ (6) tially positive the pulse also spreads in spatial domain. In the
opposite caseRz<0), the initially negative force can lead
whereV is the effective potential either to the collapseR—0) or to the final spreading. This
5 behavior is related to the competition between the increase of
V(R,T)= i B i -~ K(A%) 7) durationT and decrease of radi If the durationT reaches
’ RZ T2 A? the value T=aN/2 corresponding to the force inflection
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FIG. 2. The Gaussian pulse with the parameters in the collapse
region,R=4, T=1, andN=80, splits in spatial domain.

concerning domain can reach it having an appropriate initial
velocity oriented towards this region. The position of the
particle m with initial zero velocity predetermine its evolu-
tion towards infinity (see upper curve starting at), but

FIG. 1. The time and space components of the force in thdudicious choice of its initial velocity indeed brings it in the
domains with the positive@>0) and with the negative nonlinear- collapse domain. The pulse destinated to spread, can how-
ity (Q<0). The arrow indicates the direction of the force compo-ever collapse if it is initially prefocused. The second, lower
nents. curve starting at pointn corresponds to the trace of the par-

ticle having an initial velocity Yg=—10, vy=0). Thus,
point before the radius shrink to zero, the collapse is preEJSIng variational approgch we showed that the short laser
vented since the force changes the sién and the radius n ise abpve the crltlcal Intensity may undergo the temporal
llapse in saturating media.

starts spreadin{g]. . . . The main and well known shortcoming of the variational
In general, the saturating nonlinearity prevents the colypnroach s that it is not able to account for structural

lapse. However, the nonlinearit) changes the sign for changes of the pulse shape. Consequently the result of varia-
higher field intensities and interesting phenomena may 0CGijgnai approach can be used to predict dynamics of the pulse
cur. For instance, the pulse may undergo the collapse in timgefore the considerable changes of its shape take place. To
dimension. The pulse dynamics is considered in both thgee the realistic behavior of the pulse we carried out numeri-
positive and the negative nonlinearity domains that are sepag| simulations of Eq(2) for different initial parameters of
rated by the lineQ=0 in Fig. 1, illustrating the case when the pulse. The results of simulations qualitatively agree with
the energy ifN=280. At the right hand side of this line the the predictions of the variational approach in the domain of
durationT is always increasing but the radisspreads only  parameters out of the collapse region. A pulse with such
outside of the dashed curve corresponding to the zero forcgijtial parameters undergoes initial temporal or spatial
in radial direction Eg=0). The forceFg is negative inside  shrinking and after spreads out in both directions. The struc-
the curve producing the initial shrinking of radius which, duetural changes of the pulse at later stages of its dynamics do
to the saturation, leads during evolution to the inflectionnot alter such evolution significantly.

point (Fr=0) but never to the collapse. Consequently, inthe  Qur primary goal is to verify the prediction of variation
positive domainQ>0, the final stage of evolution corre- approach concerning the possibility of the temporal collapse
sponds to the spreading in both dimensions. In the negativef the pulse. During the propagation in the collapse region,
domain Q<0), only at the right hand side of the dotted R=4, T=1 and N=80, the Gaussian pulse considerably
curve (Fr=0) both widths,R and T, always spread. Since contracts in temporal domain as predicted by analytical ap-
the forceF is negative on the left of this curve, the initial proach. Though amplitude of the field increases significantly,
T-shrinking takes place. In the zone below the li@ethe  the unlimited amplitude growth is prevented by pulse split-
collapse inT dimension occurs althougRis always spread- ting in spatial domainsee Fig. 2 This ultimate stage of
ing. In the remaining part of the domak<<0, passing the pulse evolution is beyond the reach of the variational ap-
force inflection point the duratiof starts to increase. In proach. The splitting presented in space only, as a function
order to test the behavior of the pulse having different initialof x andy variables, corresponds to the ring formatisee
conditions, we plot the trajectories of corresponding par+ig. 3) reported in a recent experimental styéy. The pulse
ticles. The particles andn having zero initial velocities go center initially situated in origin undergo spatial spreading
to infinity. The spatial widtR, corresponding to the particle and the sharpening of the ring edge occurs. Ulterior evolu-
s initially decreases, however, whenever this particle entersion leads to the further splitting into the new concentrical
the region above the cuniz=0, the forceFg changes the rings with the tendency of asymptotical spreading. Thus, the
sign and pushs the particle towar@—=. As a conse- variational approach predicts existency of a domain of pa-
guence, the trajectory of the particle will bend to the rightrameters where the pulse has a tendency to increase its am-
side(this part of trajectory lies out of the plot in Fig).TThus  plitude significantly. However, only numerical simulations
the pulses corresponding to the partickeasndn, ultimately  can show the real end up of the evolution: the temporal col-
spread in space and in time. All pulses with initial param-lapse, i.e., the development of a mathematical singularity is
eters below the lin€ collapse in timegsee, for instance, the prevented by splitting in the spatial domain.

trajectory of the particlgp). A particle initially out of the For the same saturating nonlinearity, essentially the same

s
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21 1
- 4_ = 6
+5|El*~ 3 lE| (15

ar

JE
H=f dr

is the integral of motion of Eq.13) called Hamiltonian. The
wave collapse takes placehf<0, since the second term at
the right hand side of Eq.14) is negative. The unlimited
growth of the field amplitude occurs at the finite propagation
distance. The conditioirH<<0 for an unchirped Gaussian
pulse leads to the following inequality:

FIG. 3. The ring is obtained by plotting the pulse amplitude
versus the space coordinatésand.

2 2 1
(3BA3—2a)AT>=. (16)

behavior as in bulk media can be obtained in the two-
dimensional wave guide geometry.

In one-dimensional wave guiddtike fibers the varia- Thus necessary condition for the appearance of collapse is
tional approach also predicts the occurrence of the tempordig™>2a/33=1.84.
collapse. Due to the field confinement in transverse direc- Therefore, the occurrence of the one-dimensional tempo-
tions the spatial splitting of the field is prevented. Conse+al collapse follows directly from the momentum theory
quently, the temporal collapse takes place as can be seen pjthout any approximation. Such a collapse cannot be ar-

an exact analysis. Indeed, for one-dimensional wave guidggsted.

the Eqg.(2) can be written as

JE  9°E
i— — — +|E|?2E—|E|*E=0.

9z 97 (13

In conclusion, the laser pulse dynamics in NGVD media
with sign changing saturating nonlinearity is considered. It is
shown that the pulse above critical intensity can undergo
temporal collapse. In bulk and planar media the collapse is
arrested by spatial splitting while in the one-dimensional ge-

The momentum approach gives us the following virial typeometry the blow up of the field imminently takes place. The

relation:
d2
Bl 2lE|12—q 4
dzzf dr74|E|*=8H ZJ d7|E|*, (14

where

tendency of temporal collapse can be used to produce intense
ultrashort pulses choosing the appropriate length of the
guide.
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