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Spatiotemporal dynamics of electromagnetic pulses in saturating nonlinear optical media with
normal group velocity dispersion
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The nonlinear dynamics of ultrashort optical pulses in nonlinear saturating media with normal group velocity
dispersion is examined. The studied saturating nonlinearity changes the sign at the peak intensity of the laser
pulses. In the bulk media and the planar wave guides the temporal collapse of the pulse is arrested by its
splitting in spatial domain leading to rings formation. The wave collapse in one dimensional geometry cannot
be arrested; the field singularity develops for a finite propagation distance.@S1063-651X~99!10812-2#

PACS number~s!: 42.65.Tg
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Self-focusing and self-guiding of light beams have
ceived much attention in recent years in connection w
their important applications, such as soliton propagation,
optical switching, and logic@1#. The stable spatial soliton
with two transverse dimensions can exist in materials ch
acterized by saturable nonlinearity that exactly compens
the diffraction. The requirement to have a high-power be
implies the use of lasers in pulsed regime. Recent achie
ments in short-pulse generation have motivated the studie
short-pulse propagation in nonlinear media. In such a c
the pulse dispersion plays an important role. The spatiot
poral solitons called light bullets can be generated whene
a saturating nonlinearity compensates the anomalous gr
velocity dispersion together with the diffraction@2#. How-
ever, most transparent bulk materials exhibit normal gro
velocity dispersion~NGVD! that prevents solitons formation
The spatiotemporal dynamics of a light pulse in NGVD ca
has been comprehensively treated for Kerr media@3#. Ana-
lyzing three-dimensional nonlinear Schro¨dinger equation it
appears that NGVD prevents collapse, by splitting the pu
in time domain into several smaller-scale structures.

In this paper we study analytically and numerically t
spatiotemporal dynamics of a light pulse propagating
NGVD media with saturating nonlinearities. As a mod
nonlinearity we consider a particular type of saturating n
linearity that, with increasing pulse intensity, changes
sign from the positive to the negative one. Recent meas
ments show that the polydiacetylenepara-toluene sulfonate
~PTS! exhibits this kind of saturation nonlinearities@4#. In-
deed the nonlinear index of refraction corresponding to P
is established to bedn5n2I 1n4I 2, where I is intensity of
the electromagnetic~EM! radiation. For the 1.6mm laser
radiation the measured values of second and fourth-order
tical indices are respectivelyn252.231023 cm2/GW and
n4
520.831023 cm4/GW2. The critical intensity at the pea
of the pulse profile giving dn50 is I 05un2 /n4u
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52.75 GW/cm2. Such a nonlinearity can be considere
even for the intensities above the critical one (I 0). In this
case the nonlinear index of refraction becomes negativ
the peak while remaining positive in the wings of the pu
intensity profile. A phenomenon of spatial ring formation h
been observed in PTS due to the nonlinearity sign change
the beam center when the two-dimensional beam inten
I (;8 GW/cm2) is above the critical one@5#.

Although PTS exhibits the largest saturating nonlinear
known in any material one may not be remiss in speculat
that the same kind of saturating nonlinearities may be
tained by cascading in noncentrosymmetric media with la
effective nonlinear coefficientsn2

eff andn4
eff . The appropriate

sign of these coefficients can be obtained choosing the
currence sign of interacting waves. These coefficients can
increased by extending the length of nonlinear medium@6#.
Dynamics of ultrashort laser pulses will be strongly affect
by NGVD of media. Since diffraction and dispersion oper
tors are of opposite sign, the intense laser pulse evolutio
Kerr media results from the competition between two m
tendencies, the pulse compression in the transverse sp
direction ~the self focusing!, and the pulse stretching alon
the time axis~the temporal dispersion!. In media with satu-
rating nonlinearity that changes the sign above a critical
tensity, the pulse near its peak value undergoes spatial
fraction while compressing in time, contrary to the behav
in Kerr materials. In what follows we demonstrate that und
certain conditions NGVD leads to temporal wave collapse
one dimensional geometry, while in bulk media catastrop
temporal blow-up is arrested by spatial splitting of pulse in
smaller cells.

The dynamics of EM pulse propagating in nonlinear m
terials is based on the analysis of NSE

2ikS ]E
]z

1
1

vg

]E
]t D1D'E2kD

]2E
]t2

12k2
dn~ uEu2!

n0
E50,

~1!
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whereE is a slowly varying field envelope,vg is the group
velocity of the pulse propagating along thez axis, n0 and
dn(uEu2) are respectively linear and nonlinear optical ind
ces, andD'5]2/]x21]2/]y2 is the two-dimensional La-
placian describing beam diffraction,k is wave vector, and
D5d2k/dv2 is group velocity dispersion~GVD!. The EM
pulse propagation in media with normal GVD is consider

The dimensionless NSE reads

i
]E

]z
2

]2E

]t2 1D'E1 f ~ uEu2!E50, ~2!

where the amplitude of the field envelope and all coordina
are appropriately renormalized~see Skarkaet al. in Ref. @2#!.
A retarded time variablet5t2z/vg is used. In the case o
cylindrically symmetric pulses, the following Lagrangia
density is associated with Eq.~2!:

L5rU]E

]r U
2

2rU]E

]t U
2

1
i

2
r S E

]E*

]z
2E*

]E

]z D2rF ~ uEu2!,

~3!

where the radiusr 5(x21y2)1/2 and the nonlinear term
F(u)5*0

uf (u8)du8.
General dynamical properties of nonstationary solutio

of Eq. ~2! are rather complex. One has to resort to compu
simulation in order to investigate the solutions of such
equation. However, the obtained simulation data can
qualitatively understood using analytical approach. We st
the pulse dynamics governed by NSE using the variatio
approach@7#. The localized solution is approximated by
Gaussian trial function

E5A~z!expS 2
r 2

2R2~z!
2

t2

2T2~z!

1 i „r 2b~z!1t2c~z!1f~z!…D . ~4!

The self-similar pulse evolution in thez direction is pa-
rametrized by amplitudeA, phasef, transverse widthR, and
temporal durationT. The parameterb is wave front curvature
andc the ‘‘temporal curvature’’ corresponding to the chirp

Substituting trial function into Eq.~3! and integrating
over r andt, the average Lagrangian is obtained. It depe
only on optimizingz-dependent parameters of this trial fun
tion. The condition that the variation of average Lagrang
with respect to each of these parameters is zero gives c
sponding Euler-Lagrange equations. The equations for ef
tive forces following respectivelyR andT ‘‘directions’’ are

d2R

dz2 5FR52
]

]R
V~R,T!, ~5!

d2T

dz2 5FT52
]

]T
V~R,T!, ~6!

whereV is the effective potential

V~R,T!5
2

R2 2
1

T2 2
K~A2!

A2 ~7!
.
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with the nonlinearity function

K~u!5
8

Ap
E

0

`

dpp2F~ue2p2
!. ~8!

The ‘‘energy,’’ N5A2R2T is conserved during the puls
evolution. The wave front curvature is given by the equat
b5(1/4R)dR/dz, while the chirp parameter isc
52(1/4T)dT/dz.

The dynamics that follows from Eqs.~5!–~8! is analogous
to the behavior of a ‘‘particle’’ in a two-dimensional poten
tial. Pushing analogy further gives us better physical und
standing of the problem. Notice that inT direction the effec-
tive particle has a negative mass. Since the net force ac
on the particle is always nonvanishing@F5(FT

21FR
2)1/2

Þ0#, the localized steady solution corresponding to t
equilibrium does not exist. One can readily show th
d2(R21T2)/dz2.0. Consequently the pulse spreads at le
in one of two dimensions,R and T. Nevertheless, a cata
strophic growth of the field amplitude, so-called collaps
may occur in the remaining dimension, i.e., eitherR or T
may tend to zero for finitez.

In the general formalism we did not use an explicit for
for the nonlinear functionf (uEu2). In order to investigate the
dynamical properties of nonsteady solutions, in the sub
quent analysis we will consider a nonlinear term of the f
lowing form:

f ~ uEu2!5uEu22uEu4. ~9!

Such a saturating nonlinearity has been widely applied
different domains of research@8#. However, in what follows
we do not limit ourselves to the case when the second t
in Eq. ~9! is smaller than the first one. The nonlinearity fun
tion K in Eq. ~8! is now K(A2)5aA42bA6, where a
5223/2 andb523325/2. The forces acting on the effectiv
particles respectively inR andT direction are written as

FR5
4

R3 2
2

R
Q~A2! ~10!

and

FT5
4

T3 1
2

T
Q~A2! ~11!

with the nonlinearity

Q5aA222bA45
aN

R2T
2

2bN2

R4T2 . ~12!

In the Kerr media (b50) the nonlinearityQ is always posi-
tive and consequently the forceFT.0 pushes the particle
towards higherT. Assuming that the initial ‘‘velocity’’ of
particles, i.e., the chirp is zero, the pulse always spread
temporal domain. If the forceFR in spatial direction is ini-
tially positive the pulse also spreads in spatial domain. In
opposite case (FR,0), the initially negative force can lea
either to the collapse (R→0) or to the final spreading. This
behavior is related to the competition between the increas
durationT and decrease of radiusR. If the durationT reaches
the value T5aN/2 corresponding to the force inflectio
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point before the radius shrink to zero, the collapse is p
vented since the force changes the sign and the radius
starts spreading@3#.

In general, the saturating nonlinearity prevents the c
lapse. However, the nonlinearity~9! changes the sign fo
higher field intensities and interesting phenomena may
cur. For instance, the pulse may undergo the collapse in
dimension. The pulse dynamics is considered in both
positive and the negative nonlinearity domains that are se
rated by the lineQ50 in Fig. 1, illustrating the case whe
the energy isN580. At the right hand side of this line th
durationT is always increasing but the radiusR spreads only
outside of the dashed curve corresponding to the zero f
in radial direction (FR50). The forceFR is negative inside
the curve producing the initial shrinking of radius which, d
to the saturation, leads during evolution to the inflecti
point (FR50) but never to the collapse. Consequently, in
positive domainQ.0, the final stage of evolution corre
sponds to the spreading in both dimensions. In the nega
domain (Q,0), only at the right hand side of the dotte
curve (FT50) both widths,R and T, always spread. Sinc
the forceFT is negative on the left of this curve, the initia
T-shrinking takes place. In the zone below the lineC the
collapse inT dimension occurs althoughR is always spread-
ing. In the remaining part of the domainFT,0, passing the
force inflection point the durationT starts to increase. In
order to test the behavior of the pulse having different ini
conditions, we plot the trajectories of corresponding p
ticles. The particless andn having zero initial velocities go
to infinity. The spatial widthR, corresponding to the particl
s initially decreases, however, whenever this particle en
the region above the curveFR50, the forceFR changes the
sign and pushs the particle towardsR→`. As a conse-
quence, the trajectory of the particle will bend to the rig
side~this part of trajectory lies out of the plot in Fig. 1!. Thus
the pulses corresponding to the particless andn, ultimately
spread in space and in time. All pulses with initial para
eters below the lineC collapse in time~see, for instance, the
trajectory of the particlep). A particle initially out of the

FIG. 1. The time and space components of the force in
domains with the positive (Q.0) and with the negative nonlinear
ity (Q,0). The arrow indicates the direction of the force comp
nents.
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concerning domain can reach it having an appropriate in
velocity oriented towards this region. The position of t
particle m with initial zero velocity predetermine its evolu
tion towards infinity ~see upper curve starting atm), but
judicious choice of its initial velocity indeed brings it in th
collapse domain. The pulse destinated to spread, can h
ever collapse if it is initially prefocused. The second, low
curve starting at pointm corresponds to the trace of the pa
ticle having an initial velocity (vR5210, vT50). Thus,
using variational approach we showed that the short la
pulse above the critical intensity may undergo the tempo
collapse in saturating media.

The main and well known shortcoming of the variation
approach is that it is not able to account for structu
changes of the pulse shape. Consequently the result of v
tional approach can be used to predict dynamics of the p
before the considerable changes of its shape take place
see the realistic behavior of the pulse we carried out num
cal simulations of Eq.~2! for different initial parameters of
the pulse. The results of simulations qualitatively agree w
the predictions of the variational approach in the domain
parameters out of the collapse region. A pulse with su
initial parameters undergoes initial temporal or spa
shrinking and after spreads out in both directions. The str
tural changes of the pulse at later stages of its dynamics
not alter such evolution significantly.

Our primary goal is to verify the prediction of variatio
approach concerning the possibility of the temporal colla
of the pulse. During the propagation in the collapse regi
R54, T51 and N580, the Gaussian pulse considerab
contracts in temporal domain as predicted by analytical
proach. Though amplitude of the field increases significan
the unlimited amplitude growth is prevented by pulse sp
ting in spatial domain~see Fig. 2!. This ultimate stage of
pulse evolution is beyond the reach of the variational
proach. The splitting presented in space only, as a func
of x andy variables, corresponds to the ring formation~see
Fig. 3! reported in a recent experimental study@5#. The pulse
center initially situated in origin undergo spatial spreadi
and the sharpening of the ring edge occurs. Ulterior evo
tion leads to the further splitting into the new concentric
rings with the tendency of asymptotical spreading. Thus,
variational approach predicts existency of a domain of
rameters where the pulse has a tendency to increase its
plitude significantly. However, only numerical simulation
can show the real end up of the evolution: the temporal c
lapse, i.e., the development of a mathematical singularit
prevented by splitting in the spatial domain.

For the same saturating nonlinearity, essentially the sa

e

-

FIG. 2. The Gaussian pulse with the parameters in the colla
region,R54, T51, andN580, splits in spatial domain.
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behavior as in bulk media can be obtained in the tw
dimensional wave guide geometry.

In one-dimensional wave guides~like fibers! the varia-
tional approach also predicts the occurrence of the temp
collapse. Due to the field confinement in transverse dir
tions the spatial splitting of the field is prevented. Con
quently, the temporal collapse takes place as can be see
an exact analysis. Indeed, for one-dimensional wave gu
the Eq.~2! can be written as

i
]E

]z
2

]2E

]t2 1uEu2E2uEu4E50. ~13!

The momentum approach gives us the following virial ty
relation:

d2

dz2E dtt2uEu258H22E dtuEu4, ~14!

where

FIG. 3. The ring is obtained by plotting the pulse amplitu
versus the space coordinatesX andY.
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H5E dtFU]E

]t U
2

1
1

2
uEu42

1

3
uEu6G ~15!

is the integral of motion of Eq.~13! called Hamiltonian. The
wave collapse takes place ifH,0, since the second term a
the right hand side of Eq.~14! is negative. The unlimited
growth of the field amplitude occurs at the finite propagat
distance. The conditionH,0 for an unchirped Gaussia
pulse leads to the following inequality:

~3bA0
222a!A0

2.
1

T2 . ~16!

Thus necessary condition for the appearance of collaps
A0

2.2a/3b51.84.
Therefore, the occurrence of the one-dimensional tem

ral collapse follows directly from the momentum theo
without any approximation. Such a collapse cannot be
rested.

In conclusion, the laser pulse dynamics in NGVD med
with sign changing saturating nonlinearity is considered. I
shown that the pulse above critical intensity can unde
temporal collapse. In bulk and planar media the collaps
arrested by spatial splitting while in the one-dimensional
ometry the blow up of the field imminently takes place. T
tendency of temporal collapse can be used to produce int
ultrashort pulses choosing the appropriate length of
guide.
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